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S U M M A R Y  
In this paper a functional analysis formulation is used to determine approximately the settling time of a class of 
time-varying feed-back systems. A computational algorithm to determine the settling time is also presented. 

1. Introduction 

In the case of a feedback control system, particularly a regulator, it is often important that 
the system, when perturbed from an initial equilibrium state returns to it or to within a specified 
neighbourhood of it in the shortest possible time. In practice, the exact determination of the 
"settling time" is very difficult especially if the system is time-varying and/or nonlinear. In such 
a case it may be worthwhile to obtain an estimate of the settling time. Apart from its use in 
analyzing a specific system, a knowledge of the approximate settling times of a number of 
systems will enable the designer to choose the "best" system. As is well known, the designer 
is frequently required to select the "best" system from among a list of suitable candidates. 

To the best knowledge of the authors, no published results on this problem seem to be 
available. One investigation, which appears to be somewhat related is the work of Letov [1] 
concerning the problem of "control quality". Letov's discussion is mostly qualitative and is 
restricted to time-invariant systems. He does not give any computational procedure. 

In this paper the estimation of the settling time of a class of linear time-varying feedback 
control systems is considered. A precise mathematical formulation for a single input-single 
output linear system is discussed first. The generalization of the formulation to multi-variable 
systems is straightforward. An approximate solution using functional analysis as well as a 
simple computational algorithm are presented. The application of the algorithm is illustrated 
by. means of an example. The extension of the method to nonlinear systems is indicated. 

2. Statement and Formulation of the Problem 

Consider the feedback control system shown in Fig. 1. z is the reference input, y is the output. 
x is the "error". K1 and K 2 represent linear time-varying systems. They can be considered 
to be the kernels of linear integral operators. 2 is a real number and represents the gain of the 
feedback loop. 

The relationship between the input and the error of the system is described, in general, by 
the following integral equation 

* A preliminary version of this paper was presented at the 6th Annual Allerton Conference on System and Circuit 
Theory at the University of Illinois, Urbana, Illinois, October 2-4, 1968. 
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Equation 2.1 is a linear Volterra integral equation of the second kind. 
The settling time problem can be stated as follows. 
The system shown in Fig. 1 is perturbed from the initial equilibrium state (say x = 0) at t = 0 

by a perturbation z and the perturbation is withdrawn at a subsequent time t = to > 0. Given 
an arbitrary t > 0 and that max lz (t)[t~to, toj --< 61 and also that z (t) - 0  for t outside the interval 
[0, to], what is the minimum time required for the absolute value of the error signal to reach 
the e-neighbourhood of the equilibrium state and stay inside the neighbourhood thereafter? 

z J k I k 2 -Z--- 

"-I 

Figure 1. 

I [ • ] 

In this discussion, it is assumed that the system is asymptotically stable. A set theoretic 
formulation of this problem can be stated as follows. 

If we define a set A as 

A(to, e)= {re[to, ~ ]  : [x(t)] =< e for all t>r} (2.2) 

then the determination of the settling time reduces to the determination of the infimum of 
A(t o, 5). Since we have assumed that the system is asymptotically stable, the infimum of 
A (to, e) always exists for an arbitrary e > 0 as is shown in the next section. 

3. Existence of inf A(to, 5) 

Taking the absolute value on both sides of equation 2.1, we obtain 

l'o Ix(t)] ~ Ikl( t, z)l [z(v)ld'c+12[ Ik2(t, z)] [x('c)[dz t>O (3.1) 
o 

Let z( t )-  0 for all t >  t o and let 

max [z(t)[ = 61 
t~[O, to] 

and 
max Ix(t)l = 62(61). 

te[O, to] 

For t > to, we have 

f'o ~ ? f' Ix(t)[ _-< 61 Ikl(t, z)ldz+12162 ]k2(t, v)ldv+12] Ik2(t, z)[ Ix(z)ldz. (3.2) 
0 to 

We assume that there exists an ~1 > 0 and two bounded, continuous non-negative functions 
hi(t) and h2(t) such that 

Ikl(t, z)[ < e -~( '  ~)hx(z ) 

and (3.3) 

Ik2(t, z)[ < e-'l('-~)h2(T) 

for all z and t satisfying 0 < v < t_< oo. 
Then, for all t > to, inequality 3.2 reduces to 
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i' (o(t) <=/31 
to 

where ~b(t) = tx(t)l e ~t 

i' /31 : -  e ~ l ~ [ c ~ l h l ( ' C ) + l ) ~ l c ~ 2 h 2 ( ' c ) ]  d 'c 
to 

and 

= I; l 

Applying Gronwall's lemma [2] to inequality 3.4, we obtain 
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(3.4) 

{f' } Ix(t)l </31 exp /32 h2(~)d'c-cqt for all t >  to. (3.5) 
~ t o  

It is clear from the inequality 3.5 that limr.o o Ix(t)l~0, if lim h2(t)~c, where 0 <  c <  cq//32. If 
h2(t ) satisfies this condition then the set A(to, e) defined in 2.2 is non-empty and its infimum 
is finite. In other words, there exists a finite time T*, such that Ix(t)[ < e for all t > T*. A con- 
structive proof of the foregoing statement is given in the appendix. 

4. Determination of the Settling Time 

Although the existence of inf A (to, e) has been proved its determination is not easy. Conse- 
quently in order to determine the settling time let us define another set B(t o, ~) as follows" 

B(t o, e) = {re[t  o, oo] :xl(t  ) < ~ for all t >__r} (4.1) 
where 

xl(t ) /31exp {/32 ft~o hz(z )dz-cqt}  . (4.2) 

It is clear that B(to, e) c A(to, e) and inf B(to, e) > inf A(to, ~). Inf B(to, e) can be easily deter- 
mined and in most cases it can be considered to be a fairly good estimate of the settling time 
of the system. 

The set B(to, e) can be expressed in another form: 

B(to, e ) =  r~[to, OO):t>a 1 h2(z)dz+a 2 forall  t>r  (4.3) 
to  

where al =/32/cq and a2 = (1/el) In (ill~e). 

Determination of inf B(to, e). Case 1. If the inequality 

f t >__ al h2(z)dz+a2 (4.4) 
o 

is satisfied for all t > t o, then inf B(to, e)= t o. 

Case 2. If inequality 4.4 is not satisfied, then 

infB(to, e)= max ($1\$2) 
t~[to, oe] 

where 

{ f' 2} .S 1 = t~EtO, oo]: t=a 1 h2('c)dz+a (4.5) 
to 

and $2 c $1 is defined as 

$2= tESl" t - t l>=al  h2(z)dz+a 2 forsufficientlysmall t / > 0  (4.6) 
to  

The set $2 defined above may be empty or non-empty. 
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The set $2 is non-empty whenever the equation 

t - -a  I h2(z )dT-a  2 = 0 (4.7) 
to 

has a continuum of roots and/or has roots of even multiplicity. For  example, if both tl and tr 
are in St and ti< t I then a necessary condition that the interval [tl, ts] c $2 is that hz(t) = l /a ,  
for all te[t i ,  ty]. However, since h2(t) is related to the kernel of a physical system such a 
situation will not be very common. 

If $2 is empty, then the infimum of set B is given by the largest value of t which satisfies 
equation 4.7. If however, $2 is non-empty, then a small quantity +_ t/can be added to a solution 
T* of the equation 4.7 to determine whether or not T* is an element of S 2. If T* is not an 
element of $2, then it may be the desired solution; if T* is an element of $2 then a sufficiently 
large positive quantity t /can be subtracted from T* to continue the iteration process which 
is required to solve equation 4.7. This iterative or successive approximation process is de- 
scribed in the course of the proof of a proposition given in the appendix. It is important to 
observe that whether $2 is empty or non-empty, an estimate of the settling time of the system 
is given by one of the appropriate solutions of equation 4.7. 

5. An Example 

As an illustration of the above technique, let us consider an example of a separable time-varying 
system (Fig. 2). r(t) is a known multiplicative disturbance at the input terminals of a time- 

z(t) 
,x[fl~ r(t) 

' I S 2 +as +b 

Figure 2. 

y(t) 

II 
invariant second order differential system. Comparing Figs. 1 and 2 we have the following 
relations. 

kt(t, ~) = ~ ( t - ~ )  

e-  ~w, ~) sin c~2 (t - ~) 
k=(t, z) = 

o~ 2 

where a t =�89 

~ / b .  a2 
a2 = 4 ' assuming 

Let 

40 (5.2) 

a 2 
b - 7 -  > o .  (5.3) 

r(t) l ) \ l + t  2 +/~2cos~ot  . (5.4) 

The numerical computations were carried out on an IBM 360/67 computer using Fortran 
IV language. The following numerical values were used: a = 2 ;  b = 8 ; #o = 1 ; th = 1 ; P2 = 1.5 ; 
2 =  - 1  and ~o=0.61 radians per second; 5= 10 -2. 
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The estimated value T* of the settling time was found to be 6.5 seconds as against its exact 
value of 4.5 seconds. The computations were repeated with 2 = + 1 and o) = 3.66 rps and other 
parameters unchanged. In this case the estimated value was 6.7 seconds and the exact value 
was 3.7 seconds. 

The computational algorithm for T* seems to yield reasonably good (although pessimistic) 
estimates of the settling time. It is however realized that the closeness or disparity between the 
estimated and exact values may depend upon the relative sizes of the parameters used. But it 
seems reasonable to expect the algorithm to give a fairly accurate estimate in most cases. 

6. Multivariable Systems 

The technique described in this paper applies to multivariable systems also. If z (t) is an m- 
vector and x(t) is an n-vector, the kernels kl and k2 are n x m and n x n matrices respectively. 
The elements of kl and k2 are functions of t and r over the triangle/x = {t, z -  Go _ z _< t<_ oo}. 
2 is a scalar or a diagonal matrix with elements (21, 22, 23, ... 2,). The symbol I. I may be 
interpreted as any combination of the standard norms defined in Euclidean n-space. For 
example Ix(t)l may be taken as either 

(i) Ix(t)[ =maxlx,( t) l  or (ii) Ix(t)[ = . / ~  Ix,(t)l 2 (6.1) 
i ~ /  i = 1  

If the elements ofk (k 1 or k2) are represented by ku(t, z), then ]k(t, "c)l may be chosen to be either 

(i)' Ik(t, z)l = max Iku(t, "c)l (6.2) 
u 

or 

(ii)' Ik(t, T)I = X/~ Ikij(t, ~)]2 

for all t, T e A. 
The first set of norms (i) and (i)' may yield a sharper estimate of the settling time T*. 

(6.3) 

7. Nonlinear Systems 

The method presented in this paper can be applied to certain nonlinear systems as well. 
For instance, we can include a zero-memory nonlinear element in the forward loop to precede 
the linear system represented by K2 in Fig. 1. In other words the settling time can be estimated 
for systems represented by the integral equation 

x(t) = z(t) + 2  k2(t, z)9(% x(~))d~ (7.1) 
- -o9  

for all 9 satisfying the conditions 

g(t, O)= 0 for all t (7.2) 
and 

I9(t, u)l _-< a(t)[ul for all u~R. (7.3) 

The function a(t) > 0 is required to be continuous and bounded for all t eR  and K2(t, z) a(z) 
must satisfy a property similar to 3.3 satisfied by K2(t, ~) alone in the linear case. 

Appendix 

Proposition : Let 

f' t = al h2(z)d~+a2. 
to 

(A.1) 
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For  every pair of finite real numbers a~ > 0 and a 2 > 0 and for every continuous non-negative 
function h 2 (T), if lim h z ( t )~c,  for 0__< c < 1/al, then inf B (to, ~) defined by 4.3 exists and is finite. 
This infimum can be determined from the solution of equation A. 1 which is the same as equation 
4.7 by a method of successive approximation. 

Proof: Let us define a sequence {T,} by 

T,+ 1 = al h2(v)dz+a2 (n=0 ,  1, 2, ...) (A.2) 
o 

For an arbitrary choice of To, the sequence T, may converge to any of the intermediate 
solutions of equation A.1. To determine inf B, we may choose T o as follows" since 1-~ h2(t) 
c < 1~a i, there exists for every c'e (c, 1~a 1), a T~ ') < c~ such that h(t)< c' for all t >  T~ 
Let us choose a value for To such that T~ To< oo. It is clear that h(t)< c' for all t > 
min (To, inf B). Therefore 

I T , + I - T , I _ < ~ I T , - T , _ l l  for n > 0  

where e = a l c ' <  1. For  every integer p > 1, we have 

.+p-1 "+P-~ ITs-  Tol 
[Tn+p-Tnl -  < ~ ]Tk+I--TkI~[Ti--Tol ~, ~ k < - - c d f o r a l l n > 0 .  

k=n k=n = 1 --~ -- 

Thus lim,_~ oo [T,+v- T,[--,0 for every p > 1 and therefore {T,} is a Cauchy sequence in [to, o0]. 
Hence T, converges to a limit point T*~ [to, o0). 

That T* is a solution of equation A.1 is proved as follows" 
Let us define g(T) by 

g(T) = al h2('c)d'c +a2. (A.3) 
to 

Then 

IT* - g(T*)l - - IT* - g (r,) + g ( r , ) - g ( T * ) l  

< I T * - r , +  11 +a l l  h2(~)d'c[ �9 

Since the left hand side is independent of n the inequality is true for any n. Since iF,--, T* 
and hz(t ) is Continuous and bounded we have T* = g(T*). If T* e $2 then the process of iteration 
is continued. Let us therefore consider the other possibility, namely T * G S I \ S  2. (S 1 and $2 
are defined earlier in section 4.) 

Since every Cauchy Sequence is bounded, T* is bounded and also 
t 

T* < a 2 - ~ T ~  _ - - G O 0  
- -  1--~ 

f T~ where a i = a 2 + a  1 h2(v)d'c< oo . 
t o  

That T* is actually the desired inf B is proved as follows: Suppose T* is not the inf B, 
then there exists a t* > T* such that 

i 
t*  ' 

t * <  al h2(~)dz + a2. 
t o  

If {T,} is a nondecreasing sequence then h2(t) < c' for all t > r* .  Hence t* < T* + e(t* - r* )  
implying that t*<  T*. This leads to a contradiction. If {T,} is a nonincreasi:ng sequence then 
t* > T* implies also that t* > T o because 

i 
t 

t >a 1 h2(z)dz+a 2 for all t~[T* ,  To]. 
t o  
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Hence from the inequality 

t*<  a 1 h2(z)dz + a 2 
to 

it follows that 

t *<  T 1 +a( t*  - To) < To+a(t* - To) 

which implies that t* < To, thus leading to a contradiction. Therefore T* is actually the desired 
inf B. 
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